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ABSTRACT 

Volume rendering is now a common tool for multi-
dimensional data exploration in biology, medicine, 
meteorology, geology, material science, and other fields. 
In order to perform volume rendering, users are often 
forced to preprocess and segment their data. This step of 
processing before visualization often inhibits the use of 
volume rendering as it can be quite cumbersome and can 
also introduce undesirable artifacts. In order to enhance 
the use of direct volume visualization, powerful, yet easy-
to-use methods need to be developed. In this paper, we 
present an approach that offers the user data-dependent 
control over the focal region (in physical depth terms) of 
the visualization. This approach enables the user to easily 
visualize interior structures in the dataset by controlling 
physically defined parameters, without performing 
segmentation. 
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1. INTRODUCTION 
The quest for "seeing" through the volume to study the 
relationship between the internal structures has 
materialized in direct volume rendering [1, 2, 3]. Volume 
rendering is a powerful technique for visualizing 
volumetric datasets, which represent discrete models of 
inherently 3-D continuous scene.  
 
Three-dimensional biomedical visualization has been in 
place for several years to assist clinicians, educators, and 
medical researchers [4, 5, 6]. The availability of high-
speed low-cost general-purpose graphics workstations is 
enabling the use of computers in providing visual 
interpretations of data acquired from imaging systems. In 
the simplest form of volume rendering, a dataset is 
arranged in regular intervals as a rectilinear lattice. Each 
grid point or voxel is characterized by a scalar value 
(density as in CT, or signal strength as in MR) or color 
tuple (24-bit RGB as in the confocal microscopy or cyro-
section (Visible Human Project) [7, 14] photo images). 
The rendered image is generated directly from the data 

without an intermediate step, in contrast to surface 
rendering, which fits geometric primitives to a specified 
surface before rendering. Volume rendering is 
accomplished by classifying each voxel into colors and 
opacity and integrating a transport function through the 
volume [8]. Figure 1 shows the volume rendering stages.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Overview of volume rendering pipeline. 

 
In radiological imaging, we are often interested in 
visualizing and quantifying isolated features in the data. 
These features can be gross normal structures such as 
organs and vessels, pathologies like tumors, abnormal 
growth patterns, arterio-venous malformations, or deep 
convolutions of sulcal anatomy within the brain. Most 
important is the ability to demonstrate the lesion in 
relation to the surrounding normal anatomy in a concise 
readily interpretable form. In the ideal case, the user is 
interested in viewing a region of interest with complete 
clarity along with neighboring structure with little or no 
pre-processing. This is specially the case when surgeons’ 
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use acquired 3D data for intra-operative procedures and 
for pre-surgery planning.  
 
Routinely, these features of interest are identified using 
semi-automated image/volume segmentation techniques  
[20-25] or by manual specification of a region of interest 
(ROI). The methods for segmentation are often arduous, 
time-consuming, inexact, and prone to inter- and intra-
observer variability. Data segmentation may also involve 
some pre-processing like noise reduction and non-
uniformity correction. Some methods also require 
continuous operator supervision. Even after very careful 
specification of the region-of-interest, special volume 
rendering methods are required to visualize segmented 
data. In addition, the user is burdened with the 
management and handling of segmented data. 
Researchers [15-18] have used these techniques for 
visualization of 3D structures with some success. 
 
In this paper, we present an easy-to-use method that 
addresses some of these issues and offers an alternative 
for visualization of internal structures using direct volume 
rendering without pre-segmentation. Confocal Volume 
Rendering (CVR) has its origin in 3D MR imaging of the 
brain in order to view the cortical surface. Effective 
volume rendering of these datasets to highlight the cortex 
require that higher density structure such as skin, fat and 
bone be first stripped. The aim of CVR is to avoid these 
and similar pre-processing steps. CVR manipulates the 
opacity composition during ray casting using three main 
controls to allow the user to visualize only those internal 
structures that lie within a desired focal band. 
 

2. TECHNIQUE 
Confocal Volume Rendering (CVR) is based on depth-
dependent modification of the opacity of voxels during 
the compositing stage of the core volume rendering 
process. The core volume rendering method is based on 
object-space projection rendering. This basic approach 
has been modified to resample all voxels to planes 
transverse to the viewing direction, then project them onto 
the viewing plane in front-to-back order using a color 
blending equation as described by Levoy [3]. A detailed 
description of this method is given in [11]. Compositing 
involves integrating the color-opacity pair assigned to the 
voxels along the ray. This operation can be done in either 
direction along each ray. For back-to-front order, the 
composition equation is: 
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newC  and newα  are the color and opacity values of the 
newly calculated voxel contributing to a particular pixel, 
while, inoutC ,  and inout ,α are the accumulated color and 

opacity values at the pixel from which the ray is 
emanating after and before the ray passes through the new 
voxel [12]. Front-to-back methods are suitable for those 
models, which can take advantage of data dependent 
acceleration techniques like early ray termination. On the 
other hand, back-to-front order provides higher image 
quality and added efficiency in higher degrees of gradient 
approximation. The following paragraphs highlight, in a 
step-wise manner, the qualitative enhancements to this 
method that gives the effect of visualizing 3D data with 
confocal-like controls. 
 
In the first step, the compositing operation steps-over a 
finite depth (a physical quantity, like mm) of the tissue 
beyond the exterior surface called the See-Through Band 
(S-Band). This is controlled by the confocal depth 
parameter specified by the user. The blank (air) to surface 
(usually skin) interface is defined by the opacity mapping 
(intensity vs. opacity graph) routinely used in volume 
rendering. The second compositing control in CVR, the 
Transition-Band (T-Band), scales the opacity of the tissue 
(as a function of depth) over a user-defined depth (in mm 
beyond the S-Band. In essence, the S-Band eliminates 
dominating structures intervening in the visualization of 
deeper features of the data, while the T-Band enhances 
the underlying structure by controlling translucency of the 
exposed region. Furthermore, numerous opacity scaling 
functions can be applied in the Transition-Band under the 
interactive control of the user.  
 
2.1 S-Band (See-Through Band) 
The opacity-intensity mapping used in the core rendering 
process defines the overall translucency properties of the 
rendered image and eliminates undesirable noise 
intervening in the rendering process. As the first step, it 
establishes the distinction between empty space and the 
exterior edge of the object in the data (e.g. skin surface). 
During ray-compositing, this transition in the data is used 
to define the start of the S-Band and the end of the S-
Band is defined by the confocal depth parameter. This 
control allows the user to “erase” intervening structures 
(e.g. skin and skull) leading directly into the region of 
interest (e.g. brain surface).  
 
2.2 T-Band (Transition Band) 
As opposed to the S-Band, the T-Band or confocal width 
is more loosely defined. Whereas the confocal depth 
allows the user to define what he is not interested in 
viewing, the confocal width is used for identifying exactly 
how much (in terms of depth) of the structure the user 
desires to see. It is important to note the distinction 



between “how much” and “how”. The “how” is defined 
by the specific scaling of the opacity done in the T-Band.  
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Figure 2: Illustrating the S-Band & T-Band . 

 
2.3 The Scaling Function 
The scaling of the opacity can be defined in one of many 
ways. In the simplest form, the opacity can be linearly 
scaled from the start of the T-Band (end of the S-Band) to 
the end of the T-Band (deep into the structure of interest). 
The visualization created is closely dependent on the type 
of scaling used. The scaling just described above allows a 
gradual increase of the upcoming structures along the ray. 
Conversely, if the desired effect is to enhance the surface 
characteristics of the object a linearly decaying curve may 
be more suitable. Based on the type of depth enhancement 
desired a corresponding scaling function can be defined. 
At present, our approach uses a combination of linearly 
increasing and then linearly decaying scaling function 
(See Figure 3). Furthermore, the time to render the dataset 
is considerably reduced by terminating the ray 
compositing at the end of the T-Band. 
 
 

Figure 3: Scaling function 
 

3. METHODS 
MR volume data were obtained during the course of 
routine clinical work or research performed at the NIH. 
Data were obtained on 1.5T GE Signa MRI platforms. 
Heavily T1 weighted data volumes were obtained using a 
3D spoiled gradient technique (3D SPGR TR=12.5, 
TE=5.3) or magnetization prepared fast SPGR (TI = 300.0 
ms, TR = 6-10.0 ms, TE = 1.7-2.0 ms) with a field of 
view 24 cm, matrix size 256x256, slice thickness 1.0-1.5 
mm, axial or sagittal acquisition planes. Some were 

obtained following the intravenous administration of a 
Gadolinium chelate for contrast enhancement of lesions. 
 
Rendering was performed on a 550 MHz, 512 MB, 
Pentium III running Windows NT. The average time to 
generate an image was 10-20 seconds. Amongst the cases 
presented here, the common volume rendering parameters 
used were: Front-to-Back compositing, two light sources, 
material values (ambient=0.50, diffuse=0.70, specular 
coefficient=0.50, specular power=25), and Zucker-
Hummel gradient computation (See Appendix A). 
 

4. RESULTS 
Case I – varying S-band 
Normal brain (23 year old male): 
Using successive increase in the depth of the S-band 
keeping the T-band constant, the cortical sulcation pattern 
is clearly demonstrated (particularly in the 3rd panel at a 
depth of 9mm). Note that no segmentation has been 
performed. MR was obtained axially with a slice 
thickness of 1.1 mm for a 0.94x0.94x1.1 mm3 voxel size. 
Rendering parameters were S-Band = 0-10 cm. T-Band = 
22 mm, Depth Enhance (Peak) 9mm. 
 

 

 
Figure 4: Case I 
 
Case II – varying depth enhance peak 
Normal brain (30 year old female):  
Different obliquity demonstrating most of the cortical gyri 
of the left hemisphere, particularly the left frontal lobe, 
again without segmentation. Varying the Depth enhance 
peak from 2 mm (left panel) to 10 cm (on right panel) 
shifts the focus from superficial gyri to deep structures. 
MR parameters as in case I. Rendering parameters: S- 
Band = 14mm, T-Band = 100mm, and Depth Enhance 
(Peak) 2-100mm. 

Eye

Ray
S-Band T-Band

Depth Enhance



 

 

Figure 5: Case II 
 
Case III – varying S-band 
Cerebellar hemangioblastoma (44 year old female, post 
contrast): Varying S-band demonstrates left cerebellar 
hemangioblastoma, just deep to the left transverse sinus. 
MR parameters: TR=150.0, TE=5.6. Rendering 
parameters: S-Band = 0-40mm, T-Band = 30mm, and 
Depth Enhance (Peak) 3mm.  
 

      

      
Figure 6: Case III 

 
Case IV – varying S-band 
Brain metastasis (43 year old female)  
Left hand images (post-contrast) show successive S-band 
depths illustrating a relatively superficial, punctate (3-4 
mm), enhancing lesion in the right central sulcus near the 
midline. The relationship of the lesion to the overlying 
draining veins is well depicted. Right hand images (pre-
contrast) show a deep hemorrhagic lesion in the right 
frontal lobe (the bright signal is due to the presence of 
hemorrhage, not contrast). MR parameters: magnetization 
prepared fast SPGR with TI = 300.0 ms TR 6.7 ms TE 1.7 
ms. Rendering parameters: S-Band = 0-25mm, T-Band = 
30-45mm, and Depth Enhance (Peak) 7-9mm. 

 

 

 

 
Figure 7: Case IV 
  
Case V – varying S-Band 
Cerebellar metastasis (48 year old male, post-contrast): 
S-Band set at 0 mm (left) shows the skin surface. S-Band 
set at 15 mm shows enhancement of a target shaped lesion 
in the right cerebellum, immediately superior and adjacent 
to the enhancement of the right sigmoid sinus. MR 
parameters: magnetization prepared fast SPGR TI=300.0, 
TR=9.1, TE=2.0. Rendering parameters: S-Band = 0-
15mm, T-Band = 20mm, & Depth Enhance (Peak) 0mm.  
 

 
Figure 8: Case V 

 
 



5. DISCUSSION 
Confocal volume rendering adds a new dimension to 
three-dimensional data visualization and allows the user 
more control to emphasize or suppress 3D structures in a 
dataset according to depth. It significantly reduces the 
time to visualization by offering a more controlled feature 
selection in the direct volume rendering process and 
thereby avoiding the pre-processing phase. Since the 
entire dataset is taken into the visualization process, CVR 
avoids the artifacts that are commonly caused by data 
segmentation and allows the capability to show referential 
landmarks on the objects’ exterior, as is the case for 
surgical pre-planning.  
 
The advantage of CVR over other methods is described 
here. An alternate method to visualizing the interior of an 
object is by control of the VOI (volume of interest) or by 
oblique sectioning. Since both these tasks perform data 
clipping, valuable information is sacrificed in the process. 
A comparative view is shown in Figure 9. 
 

 

 
Figure 9: Comparison of Confocal Volume Rendering 
with Oblique slicing. 
 
Another method to look at internal structural detail is by 
segmentation. A comparison between direct CVR and 
segmented rendering using skull stripping [19] (through 
thresholding, morphological operations, and finally seed-
based region growing) is highlighted in Figure 10. The 
limitations of the latter technique can be the inability to 
recover the exterior information, time/resources to 
perform the segmentation, inter- or intra-observer 
variation, and introduction of segmentation artifacts. 
 

 

 
Figure 10: Comparison of Confocal Volume Rendering 
with volume rendering the skull-stripped version. 
 
Other methods that segment the 3D data into labeled 
voxel dataset cause other artifacts in the visualization. 
Once the data has been transformed to this “binary” form, 
the computation of the surface gradient from using 
traditional approaches for visualization leads to unde-
sirable image artifacts. Gradient estimates are required for 
illustrating the effect of light on the surface, an important 
visual cue in visualizing surfaces. Traditional approaches 
to gradient computation [9, 10] include 6-neighbor, 
Adaptive, Zucker-Hummel, 3D Sobel and others. These 
estimates are based on the inherent gray-scale variation in 
the image data, which for segmented data is discontinuous 
and results in aliasing. Due to poor gradient estimation, 
the effect on specular reflection is even worse.  
 
Another difficulty when using segmented datasets is 
computing interpolated point values. Using tri-linear 
interpolation between any two labels leads to a third not 
belonging to either of the two regions. This requires a 
very data-specific computation or a “snap to nearest 
neighbor” type identification of the interpolated value. 
This leads to ambiguity in specifying a label and a 
corresponding opacity/color appropriate for compositing. 
This problem is magnified as the number of segmented 
structures in the dataset increases. Therefore, to generate 
visually realistic imagery from segmented data, one needs 
to either separate each structure into separate datasets and 
later recombine following rendering, or determine 
alternate methods to generate a smooth appearing surface. 
 
In particular, brain segmentation algorithms are designed 
to remove vessels that are found in the space between the 
brain surface and the inner table of the skull. Many 
segmentation algorithms have difficulty in removing these 
vessels in their entirety, and fragments of vessels may 
remain attached to the brain particularly in the presence of 
contrast enhancement. While removal of these vessels 
may be particularly important in research applications 
where brain volumes are registered or measured, it is 
important to keep these landmarks in clinical applications 
particularly neurosurgical planning. The cortical draining 
veins are essential landmarks in neurosurgery, and 3D 



depiction of the relationship of lesions to the cortical 
veins as well as cortical gyri is valuable. The confocal 
technique described here preserves this information, as 
exemplified in cases III-V. 
 
Volume rendering also has a significant advantage over 
other visualization techniques, particularly surface 
rendering, is the numerous possibilities it can offer by 
control over any of its numerous parameters. These 
include gradient computation methods, region of interest, 
compositing methods, material properties (opacity & 
color), local neighborhood voxel information. The 
manipulation of these parameters significantly aids in 
highlighting the varying aspects of the data as demanded 
by different applications. 
 

6. CONCLUSIONS 
A novel approach for visualization of internal structures 
in 3D data using volume rendering without segmentation 
has been developed. It allows the user to easily specify a 
See-Through-Band and a Transition-Band in physical 
terms to expose intricate internal structures hidden under 
dominating shells. Further investigation using other 
datasets and varying the compositing parameters will be 
conducted. This has proved effective in rendering the 
cortical surface without segmentation, as well as the 
cortical draining veins. Furthermore, the authors are 
looking into possible extensions of this approach and inte-
gration with a 3D controller device that would allow 
interactive confocal navigation of data.  
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APPENDIX A 

The Zucker-Hummel (ZH) gradient [13] computation 
method was used. The ZH gradient is a three-dimensional 
edge (surface detection) operator that incorporates 
information from a 3x3x3 adjacent voxels for a better 
approximation of the edge. The ZH gradient is defined as: 
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